A Performance-Driven Laboratory Evaluation of Stone Matrix Asphalt Mixture

All images FHWA unless otherwise noted.

Mobile Asphalt Testing Trailer Program (MATT) Long-Life Asphalt Pavements for the 21st Century

U.S. Department of Transportation Federal Highway Administration

Office of Infrastructure

Amir Golalipour, Ph.D. David J. Mensching, Ph.D., P.E. Conference on Stone Matrix Asphalt November 6, 2018 • Atlanta, GA

Office of Preconstruction, Construction, and Pavements

Outline

- Background
- Asphalt Mixture Performance Tester (AMPT)
- Mixture Performance Testing
- SMA Project
- Test Results & Discussions
- Takeaways
- Questions

Acronyms

3

- AASHTO: American Association of State Highway and Transportation Officials
- ABCD: Asphalt Binder Cracking Device
- ABTL: Asphalt Binder Testing Laboratory
- AIMS: Aggregate Imaging System
- AMPT: Asphalt Mixture Performance Tester
- BBR: Bending Beam Rheometer
- CAA: Coarse Aggregate Angularity
- CC: Concentric Cylinders
- DSR: Dynamic Shear Rheometer
- DTT: Direct Tension Tester
- ETG: Expert Task Group
- Gmb: Bulk Specific Gravity
- GTR: Ground tire rubber

- HMA: Hot mix asphalt
- HQ: Headquarters
- MATT: Mobile Asphalt Testing Trailer
- MSCR: Multiple Stress Creep and Recovery
- PAV: Pressure Aging Vessel
- PEMD: Performance-Engineered Mixture Design
- PG: Performance Grading
- PRS: Performance Related Specification
- QA: Quality Assurance
- RAP/RAS: Reclaimed Asphalt Pavement/Reclaimed Asphalt Shingles
- RTFO: Rolling Thin-film Oven
- RV: Rotational Viscometer
- SSR: Stress Sweep Rutting
- TFHRC: Turner-Fairbank Highway Research Center
- WMA: Warm Mix Asphalt

Note: FHWA does not endorse products or manufacturers. Trade or manufacturers' names appear in this presentation solely for informational purposes.

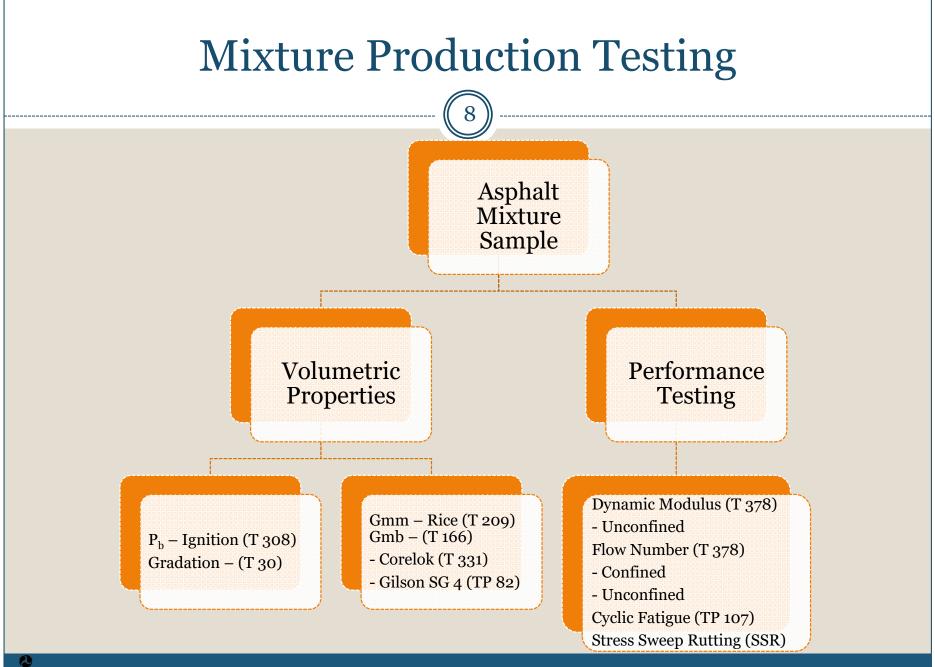
0

Pavement & Materials Discipline

Program Office

- Office of Preconstruction, Construction, and Pavements (FHWA HQ, Washington, DC)
 - × Mobile Asphalt Testing Trailer (MATT)
 - ▼ Asphalt Binder Testing Laboratory (ABTL)
- Research and Development
 - o TFHRC (McLean, VA)
- Technical Services
 - Resource Center
- Divisions

Program Objective


- Provide Support to National Initiatives
 - Performance-Engineered Mixture Design (PEMD)
 - o Increased Pavement Density
 - Development of New QA Concepts for HMA
 - o Understanding Asphalt Rubber Testing
 - Binder Performance Testing
- Provide Assistance with State-specific Issues
 - Technical Guidance
 - Forensics

Field Visit Tasks

6

- Kickoff meeting
- Open house
- Hands-on training
- Mix design replication
- Shadow QA testing
- AMPT testing
- Binder grading
- Binder performance testing

US Deportment of Transportation

Performance Characteristics

10

• Asphalt Mixture Performance Tester

Image: IPC Global

AMPT – Addressing a Need

11

- Late 1980s-Early 1990s: Strategic Highway Research Program
 - Superpave mixture design approach
 - Performance grade binders
 - No viable performance tests for mixture

• National Cooperative Highway Research Program

- 9-19: Identify simple performance tests for Superpave (rutting, fatigue)
 - ► Dynamic modulus, flow number, flow time
- 9-29: Produce test methods and prototype, conduct ruggedness and interlaboratory studies
 - ▼ Simple Performance Tester (now known as AMPT) was born!

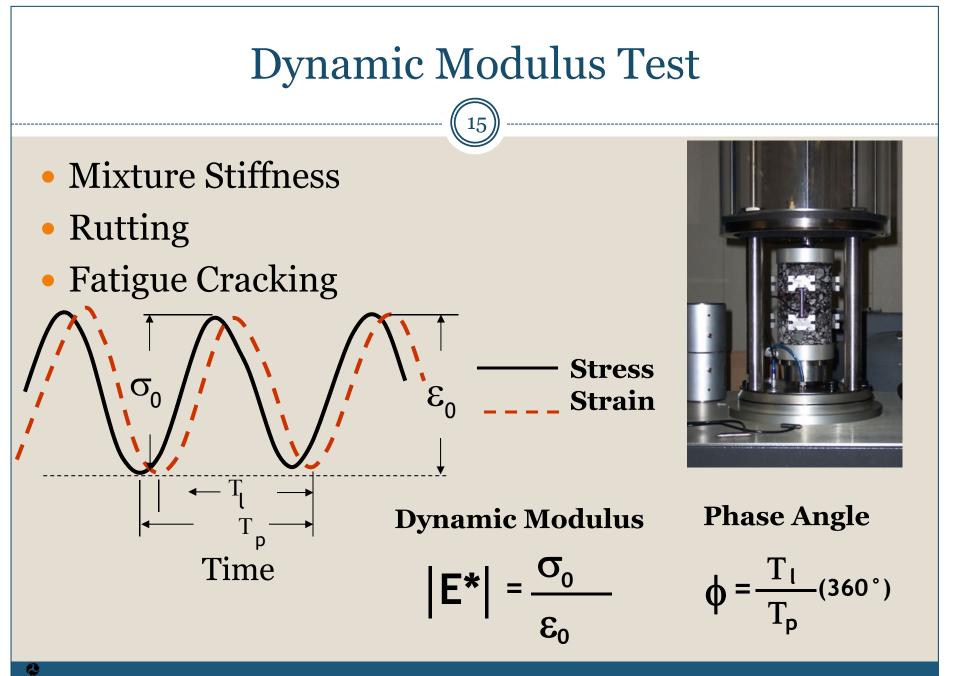
Deployment Status: AMPT

12

- Advancement of performance-engineered mixture design as support for TFHRC Shadow Projects
 - ME, MD, MO, NE (2017)
 - FHWA Western Federal Lands Highway Division (WFLHD), so far...
 (2018)
- Transition to small specimen testing and standard refinement
- Training OK, MD, MO, VT, CT, NY since December 2016
 - Resulting in shadow projects for MD, MO
- Other States have expressed that they are moving in the direction of the AMPT due to MATT visits

AMPT

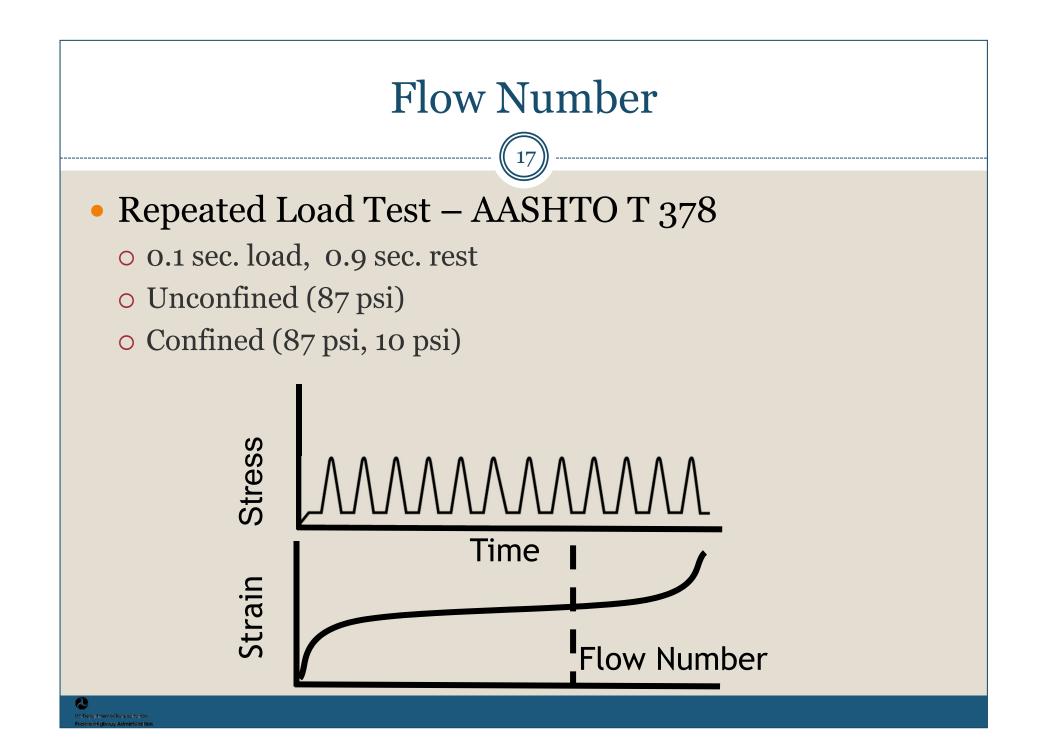
- Servo-hydraulic loading machine
- Temperature range from 4° to 70° C
- Computer-controlled device
 - Software built-in for various test procedures
- Fundamental tests
 - Stress and strain modeling
 - "Bulk testing"
 - Pavement ME
- Kits available for other tests

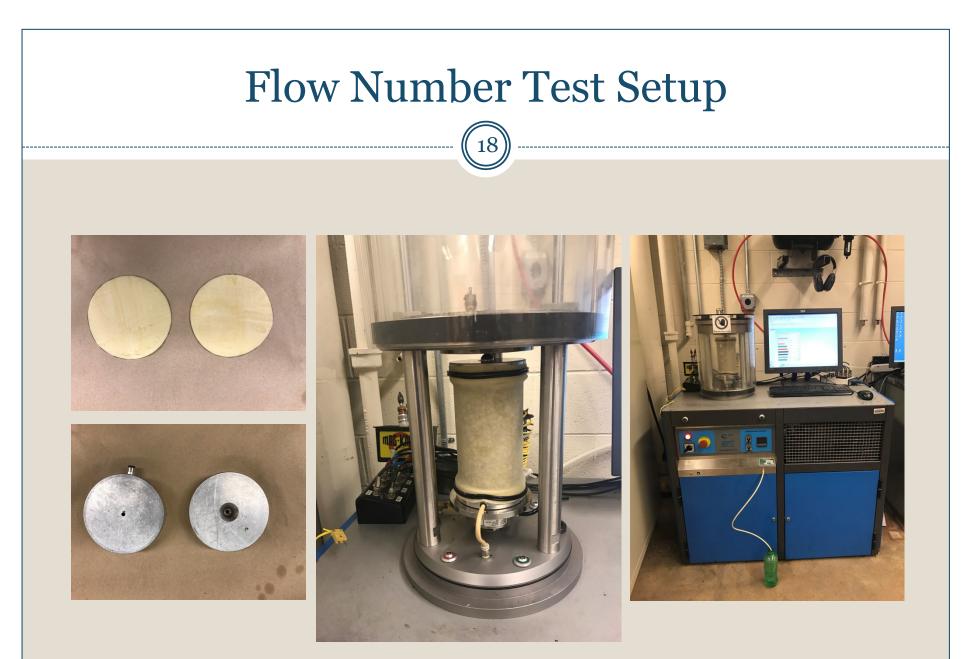


Performance Testing

- AASHTO T 378 (former TP 79)
 - o Dynamic Modulus
 - × Mixture Stiffness
 - × Rutting
 - ▼ Fatigue Cracking
 - Flow Number
 - × Rutting

AASHTO TP 107 O Cyclic Fatigue





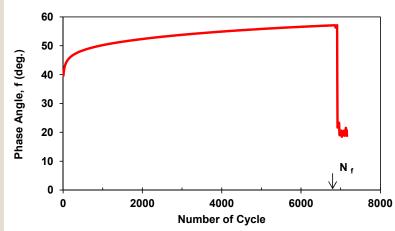
Flow Number Test

- Uniaxial repeated load test in which a HMA cylinder is repeatedly axially loaded and cumulative permanent deformation as a function of number of load cycles is measured
 - Lower laboratory flow numbers correspond to greater permanent deformation in field
 - Confined test provides better predictive abilities than unconfined

Images: North Carolina State University

AMPT Cyclic Fatigue

- Fundamental, repeated loading test
 - Based in sound engineering principles, not empirical
 Direct tension
- AASHTO TP 107-14 Determining the Damage Characteristic Curve of Asphalt Mixtures from Direct Tension Cyclic Fatigue Tests
 - |E*| Linear Viscoelastic (LVE) Test
 - |E*| Dynamic Modulus (Finger Print) Test
 - A typical mid-specimen failure
 - Predicted Nf & Failure properties



Test Procedure

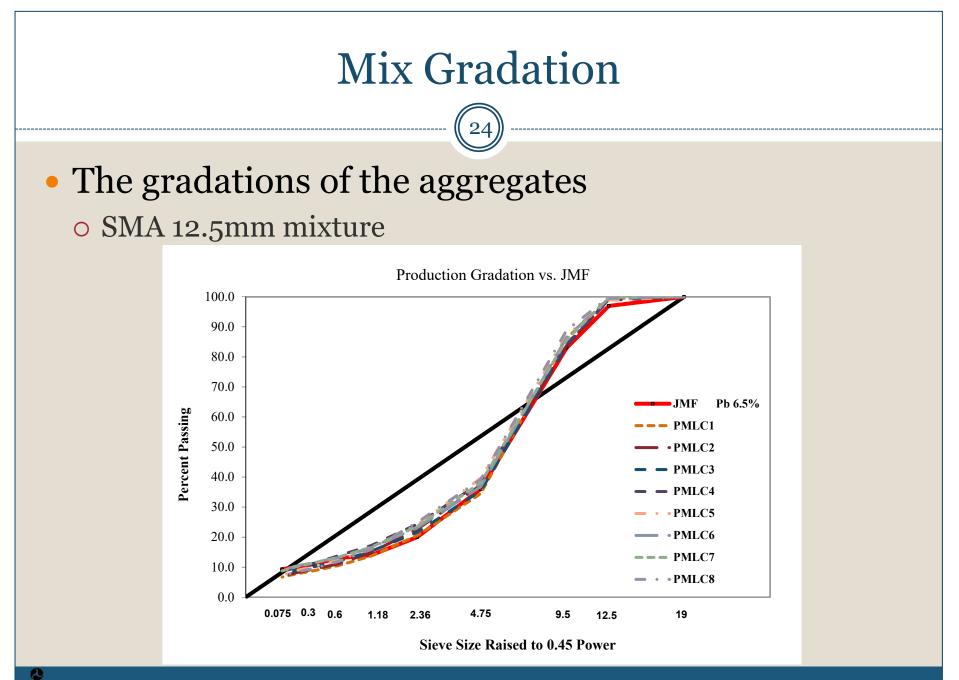
20

• Controlled strain cyclic tension test

- o pull-pull load test
- A constant frequency of 10 Hz
- Temperature is based on Intermediate Grade (TP 107)
- Failure is determined by a sharp decrease in phase angle

AMPT Cyclic Fatigue Advantages

- Standard sample preparation
- AASHTOWare Pavement ME compatible
- Ruggedness, precision and bias underway
- Spreadsheet analysis & formulation available
- Predicts performance
- Material behavior across all possible loading conditions



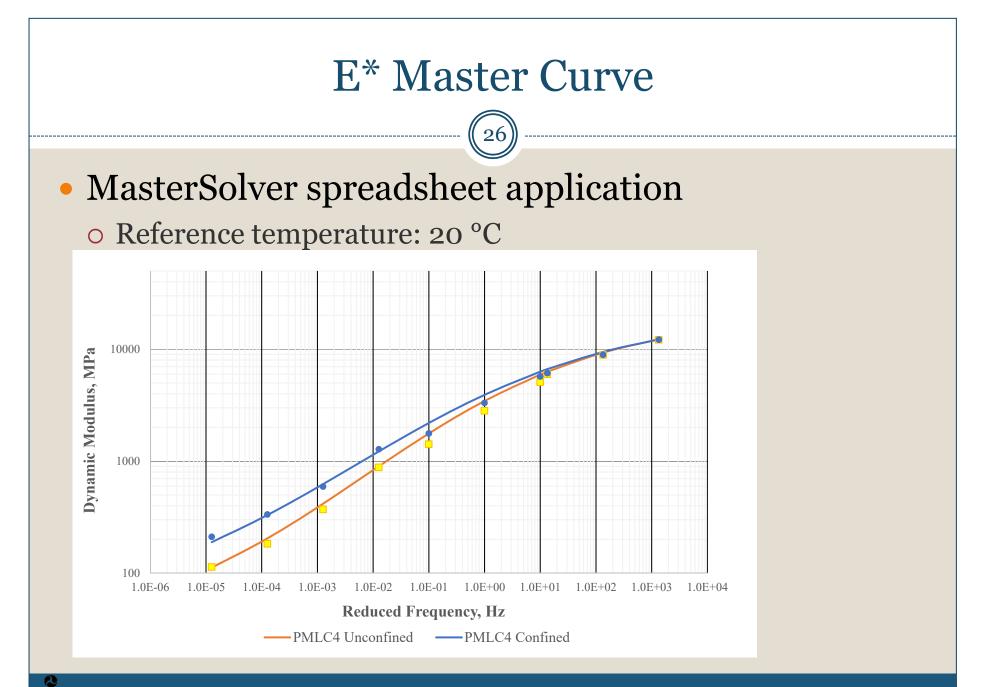
Project Description

23

- Stone Matrix Asphalt (SMA) or gap graded mixtures
 - 0 12.5 mm hot mix asphalt (HMA)
 - o 10-30 million equivalent single axle loads (ESALs)
 - Thickness of the SMA layer: 2 inches
 - o Asphalt binder: PG 64E-22
- Design mix volumetric results

Property	JMF Value
Combined Aggregate Bulk Specific Gravity (G _{sb})	2.730
Optimum Binder Content, %	6.5
Maximum Specific Gravity (G _{mm})	2.473
Design Air Voids	3.5
Voids in Mineral Aggregate (VMA)	18.2
Voids Filled with Asphalt (VFA)	80.9
Filler to Effective Asphalt Ratio	1.46

US Department of Transportation


Dynamic Modulus Test

25

• |E*|Test Results

• PMLC4 and PMLC7 for both confined and unconfined dynamic modulus

		PMLC4-U	nconfined	PMLC4-	Confined	PMLC7-U	nconfined	PMLC7-	Confined
Temperature, Frequency °C , Hz	Frequency , Hz	Avg. <i>E*</i>	<i>E</i> * COV	Avg. E*	<i>E</i> * COV	Avg. E*	<i>E*</i> COV	Avg. E*	<i>E</i> * COV
4	10	12101	3.9%	12362	2.1%	12341	8.9%	12048	7.0%
4	1	8878	3.9%	8993	0.9%	8892	7.9%	8607	8.8%
4	0.1	5956	3.7%	6116	1.6%	5905	7.9%	5711	10.4%
20	10	5068	3.1%	5764	1.9%	5312	6.2%	5619	1.8%
20	1	2813	3.4%	3326	2.5%	2970	8.4%	3242	3.9%
20	0.1	1414	5.2%	1773	5.1%	1512	10.6%	1718	6.8%
45	10	880	10.9%	1339	1.4%	948	10.9%	1334	4.0%
45	1	370	11.9%	622	1.1%	411	12.8%	759	4.8%
45	0.1	183	10.1%	342	7.9%	205	11.1%	512	11.8%
45	0.01	113	5.3%	210	13.0%	148	24.5%	405	17.3%

US Department of Transportation Federal Highway Administration

Flow Number Test

• Test Details

- The tests are terminated at either 10,000 load cycles or at the accumulation of 50,000 microstrain
- Flow number conducted at adjusted high PG temperature is 54.1 °C based on the project weather station, for which the corresponding (50% reliability, 20 mm below the pavement surface and not adjusted for traffic) $E_p = A(N^B) + C[e^{D^*N}-1]$
- Francken Model used for analysis
- Minimum Average Flow Number Requirements: Table X2.4 from AASHTO T 378, Appendix X2

	Traffic Level, million ESAL's	HMA Minimum Average Flow Number	WMA Minimum Average Flow Number
	<3		
	3 to 10	50	30
	10 to < 30	190	105
(Transportation y Administration	>30	740	415

Flow Number Results – PMLC4

28)

• Flow number calculated

PMLC4 Unconfined	Flow Number	µstrain @ flow point	Permanent Strain Rate at flow number
Replicate 1	120	18778	91.2
Replicate 2	217	24089	61.9
Replicate 3	152	19993	79.8
Average	163	20953	77.6
StDev	49	2783	15
CV%	30	13	19

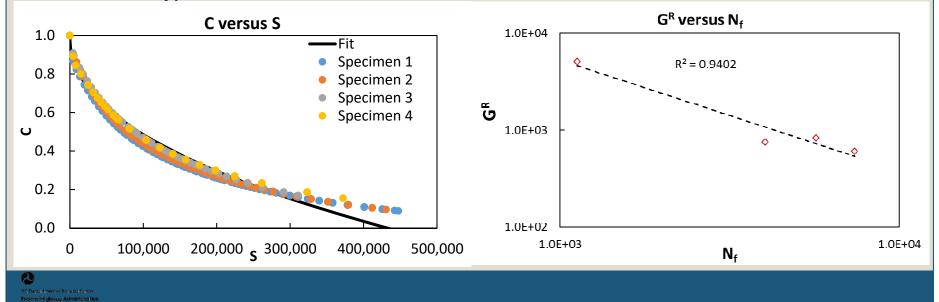
PMLC4 Confined	Flow Number	µstrain @ flow point	Permanent Strain Rate at flow number
Replicate 1	1503	27503	9.1
Replicate 2	1071	26061	11.9
Replicate 3	1436	22908	8.2
Average	1337	25491	9.7
StDev	233	2350	2
CV%	17	9	20

Flow Number Results – PMLC7

·(29)

• Flow number calculated

PMLC7 Unconfined	Flow Number	μstrain @ flow point	Permanent Strain Rate at flow number
Replicate 1	460	26774	31.0
Replicate 2	579	25751	22.7
Replicate 3	459	27638	31.7
Average	499	26721	28.5
StDev	69	945	5
CV%	14	4	17


PMLC7 Confined	Flow Number	μstrain @ flow point	Permanent Strain Rate at flow number
Replicate 1	10000	23059	0.11
Replicate 2	10000	23842	0.37
Replicate 3	10000	25802	0.66
Average	10000	24234	0.4
StDev	0	1413	0
CV%	0	6	73

Cyclic Fatigue Test- Analysis Process

- Simplified Viscoelastic Continuum Damage (S-VECD) Model
- ALPHA-Fatigue proprietary software
 - o Damage Characteristic Curve (C vs. S curve)
 - Number of Cycles to Failure (Nf)
 - Failure Properties

Cyclic Fatigue Results

- Simplified Viscoelastic Continuum Damage (S-VECD) model
 - (C versus S) that relates the amount of damage (S) in a specimen to the material integrity or pseudo stiffness (C)
 - GR, characterizes the overall rate of damage accumulation during the test

Summary of Findings

• AMPT Performance Testing

- Dynamic modulus charts showed changes in stiffness of the mixture during production.
- Based on the flow number criteria in AASHTO T 378, the SMA mixture has acceptable rutting resistance for the design traffic level.
- The AMPT cyclic fatigue testing indicated a difference in the fatigue properties for during production.
- The present project succeeded in identifying and confirming the performance of SMA asphalt mixtures using AMPT equipment and tests.

AMPT Implementation

- Transportation Pooled Fund Study (TPF(5)-178)
 - Purchase, installation of 29 AMPTs
 - NHI Course (over 80 trainees)
 - Interlaboratory study on effect of air voids
 - National workshop
 - Equipment specification, and others
- Test standard development, improvement, and revision
- Instructional videos, TechBriefs
- MATT projects/training
- User groups at TRB and regional meetings

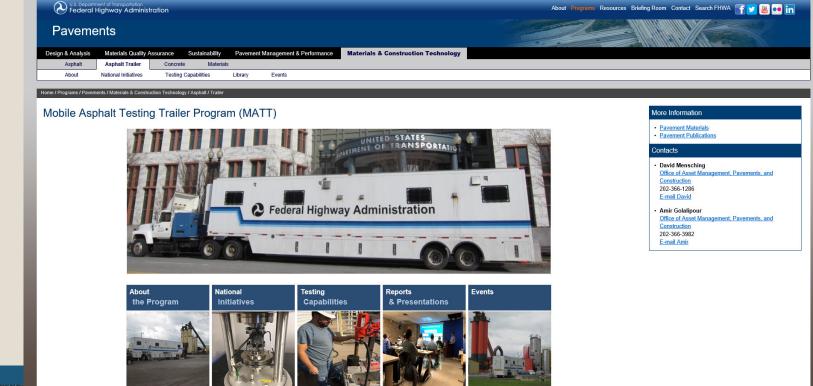
AMPT Users Groups

- National/International
 - TRB annual meeting
 - Discussion of issues, best practices, future efforts
 - 0 195 members, 28 DOTs present
- Regional
 - User-producer groups
 - State asphalt paving association meetings

Technical Assistance

35

• If you have upcoming projects for which you would like MATT technical assistance, contact:


Amir Golalipour, <u>amir.golalipour.ctr@dot.gov</u>, 202.366.3982
Dave Mensching, <u>david.mensching@dot.gov</u>, 202.493.3232

https://www.fhwa.dot.gov/pavement/asphalt/trailer/

Thank You – Questions?

36

- Trailer is parked outside! Come in for a tour!
- We're here to assist! Please stop by anytime for more discussion.

